Survival Analysis in Python

Updated on

Course overview

Provider
Datacamp
Course type
Free trial availiable
Deadline
Flexible
Duration
4 hours
Certificate
Available on completion
Course author
Shae Wang

Description

Use survival analysis to work with time-to-event data and predict survival time.
How long does it take for flu symptoms to show after exposure? And what if you don't know when people caught the virus? Do salary and work-life balance influence the speed of employee turnover? Lots of real-life challenges require survival analysis to robustly estimate the time until an event to help us draw insights from time-to-event distributions. This course introduces you to the basic concepts of survival analysis. Through hands-on practice, you’ll learn how to compute, visualize, interpret, and compare survival curves using Kaplan-Meier, Weibull, and Cox PH models. By the end of this course, you’ll be able to model survival distributions, build pretty plots of survival curves, and even predict survival durations.

Similar courses

Bayesian Statistics: From Concept to Data Analysis
  • Flexible deadline
  • 12 hours
  • Certificate
Probability Theory: Foundation for Data Science
  • Flexible deadline
  • 48 hours
  • Certificate
  • English language

  • Recommended provider

  • Certificate available