Regression Models

4.44

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Mixed
Deadline
Flexible
Duration
54 hours
Certificate
Paid Certificate Available
Course author
Brian Caffo, PhD
  • Use regression analysis, least squares and inference

  • Understand ANOVA and ANCOVA model cases

  • Investigate analysis of residuals and variability

  • Describe novel uses of regression models such as scatterplot smoothing

Description

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.

Similar courses

Bayesian Statistics: From Concept to Data Analysis
  • Flexible deadline
  • 12 hours
  • Certificate
Probability Theory: Foundation for Data Science
  • Flexible deadline
  • 48 hours
  • Certificate
Regression Models
  • English language

  • Recommended provider

  • Certificate available