Optimizing Machine Learning Performance

4.56

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Mixed
Deadline
Flexible
Duration
12 hours
Certificate
Paid Certificate Available
Course author
Anna Koop

Description

This course synthesizes everything your have learned in the applied machine learning specialization. You will now walk through a complete machine learning project to prepare a machine learning maintenance roadmap. You will understand and analyze how to deal with changing data. You will also be able to identify and interpret potential unintended effects in your project. You will understand and define procedures to operationalize and maintain your applied machine learning model. By the end of this course you will have all the tools and understanding you need to confidently roll out a machine learning project and prepare to optimize it in your business context. To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). This is the final course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute (Amii).

Similar courses

Machine Learning
  • Flexible deadline
  • 61 hours
  • Certificate
Neural Networks and Deep Learning
  • Flexible deadline
  • 27 hours
  • Certificate
Introduction to Machine Learning in Production
  • Flexible deadline
  • 10 hours
  • Certificate
Optimizing Machine Learning Performance
  • English language

  • Recommended provider

  • Certificate available