Natural Language Processing with Sequence Models

4.5

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Intermediate
Deadline
Flexible
Duration
25 hours
Certificate
Paid Certificate Available
Course author
Younes Bensouda Mourri
  • Use recurrent neural networks, LSTMs, GRUs & Siamese networks in Trax for sentiment analysis, text generation & named entity recognition.

Description

In Course 3 of the Natural Language Processing Specialization, you will:a) Train a neural network with GLoVe word embeddings to perform sentiment analysis of tweets, b) Generate synthetic Shakespeare text using a Gated Recurrent Unit (GRU) language model, c) Train a recurrent neural network to perform named entity recognition (NER) using LSTMs with linear layers, and d) Use so-called ‘Siamese’ LSTM models to compare questions in a corpus and identify those that are worded differently but have the same meaning. By the end of this Specialization, you will have designed NLP applications that perform question-answering and sentiment analysis, created tools to translate languages and summarize text, and even built a chatbot! This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper.

Similar courses

Machine Learning
  • Flexible deadline
  • 61 hours
  • Certificate
Neural Networks and Deep Learning
  • Flexible deadline
  • 27 hours
  • Certificate
Introduction to Machine Learning in Production
  • Flexible deadline
  • 10 hours
  • Certificate
Natural Language Processing with Sequence Models
  • English language

  • Recommended provider

  • Certificate available