Intermediate Regression with statsmodels in Python

Updated on

Course overview

Provider
Datacamp
Course type
Free trial availiable
Deadline
Flexible
Duration
4 hours
Certificate
Available on completion
Course author
Maarten Van den Broeck

Description

Learn to perform linear and logistic regression with multiple explanatory variables.
Linear regression and logistic regression are the two most widely used statistical models and act like master keys, unlocking the secrets hidden in datasets. In this course, you’ll build on the skills you gained in "Introduction to Regression in Python with statsmodels", as you learn about linear and logistic regression with multiple explanatory variables. Through hands-on exercises, you’ll explore the relationships between variables in real-world datasets, Taiwan house prices and customer churn modeling, and more. By the end of this course, you’ll know how to include multiple explanatory variables in a model, discover how interactions between variables affect predictions, and understand how linear and logistic regression work.

Similar courses

Bayesian Statistics: From Concept to Data Analysis
  • Flexible deadline
  • 12 hours
  • Certificate
Probability Theory: Foundation for Data Science
  • Flexible deadline
  • 48 hours
  • Certificate
  • English language

  • Recommended provider

  • Certificate available