Data Manipulation at Scale: Systems and Algorithms

4.28

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Mixed
Deadline
Flexible
Duration
20 hours
Certificate
Paid Certificate Available
Course author
Bill Howe

Description

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales.In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems i

Similar courses

Foundations: Data, Data, Everywhere
  • Flexible deadline
  • 20 hours
  • Certificate
Ask Questions to Make Data-Driven Decisions
  • Flexible deadline
  • 18 hours
  • Certificate
Introduction to Statistics
  • Flexible deadline
  • 15 hours
  • Certificate
Data Manipulation at Scale: Systems and Algorithms
  • English language

  • Recommended provider

  • Certificate available