Data for Machine Learning

4.39

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Intermediate
Deadline
Flexible
Duration
12 hours
Certificate
Paid Certificate Available
Course author
Anna Koop

Description

This course is all about data and how it is critical to the success of your applied machine learning model. Completing this course will give learners the skills to:Understand the critical elements of data in the learning, training and operation phases Understand biases and sources of data Implement techniques to improve the generality of your model Explain the consequences of overfitting and identify mitigation measures Implement appropriate test and validation measures. Demonstrate how the accuracy of your model can be improved with thoughtful feature engineering. Explore the impact of the algorithm parameters on model strength To be successful in this course, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). This is the third course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute.

Similar courses

Machine Learning
  • Flexible deadline
  • 61 hours
  • Certificate
Neural Networks and Deep Learning
  • Flexible deadline
  • 27 hours
  • Certificate
Introduction to Machine Learning in Production
  • Flexible deadline
  • 10 hours
  • Certificate
Data for Machine Learning
  • English language

  • Recommended provider

  • Certificate available