Bayesian Statistics: Mixture Models

4.64

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Intermediate
Deadline
Flexible
Duration
22 hours
Certificate
Paid Certificate Available
Course author
Abel Rodriguez

Description

Bayesian Statistics: Mixture Models introduces you to an important class of statistical models. The course is organized in five modules, each of which contains lecture videos, short quizzes, background reading, discussion prompts, and one or more peer-reviewed assignments. Statistics is best learned by doing it, not just watching a video, so the course is structured to help you learn through application. Some exercises require the use of R, a freely-available statistical software package. A brief tutorial is provided, but we encourage you to take advantage of the many other resources online for learning R if you are interested. This is an intermediate-level course, and it was designed to be the third in UC Santa Cruz's series on Bayesian statistics, after Herbie Lee's "Bayesian Statistics: From Concept to Data Analysis" and Matthew Heiner's "Bayesian Statistics: Techniques and Models." To succeed in the course, you should have some knowledge of and comfort with calculus-based probability, principles of maximum-likelihood estimation, and Bayesian estimation.

Similar courses

Foundations: Data, Data, Everywhere
  • Flexible deadline
  • 20 hours
  • Certificate
Ask Questions to Make Data-Driven Decisions
  • Flexible deadline
  • 18 hours
  • Certificate
Introduction to Statistics
  • Flexible deadline
  • 15 hours
  • Certificate
Bayesian Statistics: Mixture Models
  • English language

  • Recommended provider

  • Certificate available