Advanced Dimensionality Reduction in R

Updated on

Course overview

Provider
Datacamp
Course type
Free trial availiable
Deadline
Flexible
Duration
4 hours
Certificate
Available on completion
Course author
Federico Castanedo

Description

Learn how to apply advanced dimensionality techniques such as t-SNE and GLRM.
Dimensionality reduction techniques are based on unsupervised machine learning algorithms and their application offers several advantages. In this course you will learn how to apply dimensionality reduction techniques to exploit these advantages, using interesting datasets like the MNIST database of handwritten digits, the fashion version of MNIST released by Zalando, and a credit card fraud detection dataset. Firstly, you will have a look at t-SNE, an algorithm that performs non-linear dimensionality reduction. Then, you will also explore some useful characteristics of dimensionality reduction to apply in predictive models. Finally, you will see the application of GLRM to compress big data (with numerical and categorical values) and impute missing values. Are you ready to start compressing high dimensional data?

Similar courses

Machine Learning
  • Flexible deadline
  • 61 hours
  • Certificate
Neural Networks and Deep Learning
  • Flexible deadline
  • 27 hours
  • Certificate
Introduction to Machine Learning in Production
  • Flexible deadline
  • 10 hours
  • Certificate
  • English language

  • Recommended provider

  • Certificate available