Advanced Computer Vision with TensorFlow

4.78

Updated on

Course overview

Provider
Coursera
Course type
Free online course
Level
Intermediate
Deadline
Flexible
Duration
29 hours
Certificate
Paid Certificate Available
Course author
Laurence Moroney

Description

In this course, you will:a) Explore image classification, image segmentation, object localization, and object detection. Apply transfer learning to object localization and detection. b) Apply object detection models such as regional-CNN and ResNet-50, customize existing models, and build your own models to detect, localize, and label your own rubber duck images. c) Implement image segmentation using variations of the fully convolutional network (FCN) including U-Net and d) Mask-RCNN to identify and detect numbers, pets, zombies, and more. d) Identify which parts of an image are being used by your model to make its predictions using class activation maps and saliency maps and apply these ML interpretation methods to inspect and improve the design of a famous network, AlexNet. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models.

Similar courses

Machine Learning
  • Flexible deadline
  • 61 hours
  • Certificate
Neural Networks and Deep Learning
  • Flexible deadline
  • 27 hours
  • Certificate
Introduction to Machine Learning in Production
  • Flexible deadline
  • 10 hours
  • Certificate
Advanced Computer Vision with TensorFlow
  • English language

  • Recommended provider

  • Certificate available